The paper we wrote with Christopher Sutton and Mark Sandler has been accepted to the Linking Data on the Web workshop at WWW, and it is now available from the workshop website.

This paper explains in a bit more details (including pseudocode and the evaluation of two implementations of it) the algorithm I already described briefly in previous posts (oh yeah, this one too).

The problem is: how can you automatically derive owl:sameAs links between two different, previously unconnected, web datasets? For example, how can I state that Both in Jamendo is the same as Both in Musicbrainz?

The paper studies three different approaches. The first one is just a simple literal lookup (so in the previous example, it just fails, because there are two artists and a gazillion of tracks/records holding Both in their titles, in Musicbrainz). The second one is a constrained literal lookup (we specifically look for an artist, a record, a track, etc.). Our previous example also fails, because there are two matching artists in Musicbrainz for Both.

The algorithm we describe in the paper can intuitively be described as: if two artists made albums with the same title, they have better chances to be similar. It will browse linked data in order to aggregate further clues and be confident enough to disambiguate among several matching resources.

Although not specific to the music domain, we did evaluate it in two music-related contexts:

For the second one, we tried to cover a wide range of possible metadata mistakes, and checked how well our algorithm was copping with such bad metadata. A week ago, I compared the results with the Picard Musicbrainz tagger 0.9.0, and here are the results (you also have to keep in mind that our algorithm is quite a bit slower, as the Musicbrainz API is not really designed for the sort of things we do with it), for the track I Want to Hold Your Hand by the Beatles, in the Meet the Beatles! album:

  • Artist field missing:
    • GNAT: Correct
    • Picard: Matches the same track, but on the And Now: The Beatles compilation
  • Artist set to random string:
    • GNAT: Correct
    • Picard: Matches the same track, but on another release (track 1 of The Capitol Albums, Volume 1 (disc 1: Meet the Beatles!))
  • Artist set to Beetles:
    • GNAT: Correct
    • Picard: Matches the same track, but on another release (track 1 of The Capitol Albums, Volume 1 (disc 1: Meet the Beatles!))
  • Artist set to Al Green (who actually made a cover of that song):
    • GNAT: Mapped to Al Green's cover version on Soul Tribute to the Beatles
    • Picard: Same
  • Album field missing:
    • GNAT: Matches the same track, but on another release (track 1 of The Capitol Albums, Volume 1 (disc 1: Meet the Beatles!))
    • Picard: Matches the same track, but on the single
  • Album set to random string:
    • GNAT: Matches the same track, but on another release (track 1 of The Capitol Albums, Volume 1 (disc 1: Meet the Beatles!))
    • Picard: Matches the same track, but on the single
  • Album set to Meat the Beatles:
    • GNAT: Matches the same track, but on another release (track 1 of The Capitol Albums, Volume 1 (disc 1: Meet the Beatles!))
    • Picard: Matches the same track, but on the compilation The Beatles Beat
  • Track set to random string:
    • GNAT: Correct
    • Picard: No results
  • Track set to I Wanna Hold Your Hand:
    • GNAT: Correct
    • Picard: Matches the same track, but on the compilation The Beatles Beat
  • Perfect metadata:
    • GNAT: Correct
    • Picard: Matches the same track, but on the compilation The Beatles Beat

Most of the compilation results of Picard are actually not wrong, as the track length of our test file is closer to the track length on the compilation than the track length on the Meet the Beatles album.

Of course, this is not an extensive evaluation of how the Picard lookup mechanism compares with GNAT. And GNAT is not able to compete at all with Picard, as it was clearly not designed for the same reasons (GNAT is meant to interlink RDF datasets).

The python implementation of our algorithm is under the BSD license, and available in the motools sourceforge project. The Prolog implementation (working on RDF datasets) is also available in the motools sourceforge project.